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Abstract. The location of the zeros of the partition function for king models having four-, 
six-, or eight-body interactions are studied. For quasi-one-dimensional models the zeros 
are found to lie on intersecting circles in the y plane where y = exp (2ph). These circles 
are part of a family of circles which includes the unit circle of Lee and Yang. Two, three, 
and four circles are needed for the four-body, six-body, and eight-body interaction systems, 
respectively. A counter example is found to show this behaviour does not hold for all 
such systems. 

1. Introduction 

Ever since 1952 when Lee and Yang (1952a, b) presented their theory of phase 
transitions based on the location of the zeros of the partition function, there has been 
continual interest in determining the location of the zeros for specific systems. 
Approaches to this problem have varied from proving theorems stating regions of the 
complex plane where no zeros exist (Dunlop 1977, 1979, Ruelle 1971) to looking at 
systems which are simple enough to be able to calculate the partition function explicitly 
and find the exact location of the zeros (Katsura and Ohminami 1972, Katsura er a1 
1972 and, for a general review, Kurtze 1979). 

Examples of the latter approach have generally been based on calculations involving 
one-dimensional Ising-model systems having pair interactions. We continue in this 
basic approach but with some significant changes. First we consider only systems 
having many-body interactions (three-, four- or higher-body interactions) along with 
the single-body interaction between a spin and the external magnetic field. Second, 
the systems are not strictly one-dimensional but are what might be called quasi-one- 
dimensional, e.g., the ladder type lattice shown in figure 7. In most of the previous 
studies, apart from the cases where the Lee-Yang circle theorem is known to be true, 
it has been found that the location of the zeros is of rather complex form, e.g., see 
the figures in Katsura and Ohminami (1972). With the systems under consideration 
here, the location of the zeros is rather simple and this is one reason we feel the 
results are of interest. 

We begin in the next section by considering a single unit or building block of the 
full quasi-one-dimensional systems considered in § 3. We see that the nature of the 
location of the zeros is not changed when we go from the single unit to the full system. 
In the fourth section we look at some small two-dimensional and three-dimensional 
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systems to determine the location of their zeros and, more importantly, to see how 
much they retain the simple structure that the loci of the zeros have for the quasi-one- 
dimensional case. 

2. Basic cell systems 

We begin by looking at single units or basic cells of a lattice because of the simplicity 
of calculating the zeros for such systems. An equally important factor is that many 
examples in the past have shown that the general loci of the zeros does not depend 
on the size or dimensionality of the system, the classic illustration again being the 
Lee-Yang circle theorem. Therefore, these simple systems hopefully reflect the charac- 
teristics of larger systems. 

Throughout the paper we will be dealing with spin-$ systems with Si indicating the 
spin variable on the ith site and Si = *l. Each system has a Hamiltonian which is a 
function of the configuration of the system where {S} denotes a specific configuration. 
The partition function is 

where P = l / k T  k is the Boltzmann constant, and T the temperature. 

Hamiltonian for the system is 
The first system we consider is the four-spin system shown in figure l (a) .  The 

H ( { S } )  = -JS1SlS2S2-h(s1+Sl+S2+S2). (2 .2)  

51 5 - 2  

7 - - - - - 7  

Figure 1. Basic cell systems of four, six, and eight spins in (a), (b) and (c ) ,  respectively. 

The location of the zeros of the partition function for this system is shown in figure 
2. Rather than plot the zeros in the complex h plane they have been plotted in the 
complex y plane where y = exp (2ph) .  The location of the zeros is shown for various 
non-negative values of J ranging from zero to infinity. The value of J is related to 
the value of x shown in the figure by x = exp (PJ) .  The zeros lie on two circles which 
intersect each other at the points y = *l and whose centres are at y = *i. 
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Figure 2. Zeros for the basic cell system of four spins with the zeros plotted in the 
y = exp(2ph) plane for cases of: ( a )  x = 1.0; ( 6 )  x = 1.1; (c) x = 2.0; and ( d )  x = W. 

While the location of the zeros is simple in the y plane, if we define 

w = ( y  - l ) / (y  + 1) = tanh(ph) (2.3) 
their location in the w plane is perhaps even simpler. The transformation (2.3) takes 
the two circles into two straight lines through the origin of the w plane, one at 45" 
and the other at 135". In fact any circle passing through the points y = *l in the y 
plane becomes a straight line passing through the origin of the w plane (Ahlfors 
1966). The zeros of the four-spin system plotted in the w plane are shown in figure 
3. We will see that the entire family of circles are of importance. The location of the 
zeros for systems with pair interactions, i.e., the unit circle in the y plane, is a member 
of this family of circles. 

Figure 3. Zeros for the basic cell system of four spins with the zeros plotted in the w 
plane for cases where: ( a )  x = 1.1; ( b )  x =2.0; and (c) x =W.  The zeros for x = 1.0 are 
at infinity. 

We next want to consider a system of six lattice sites, as shown in figure l (b) ,  with 
a Hamiltonian 

~ ( { S } ) = - ~ S l S ~ ~ * S z ~ z ~ z -  h(S1+S1 +SI +SZ+S2+S2). (2.4) 
The partition function and its zeros can be easily calculated and the zeros are found 
to lie along three intersecting circles in the y plane. The location for various values of 
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J are shown in figure 4. In the w plane the zeros lie along three intersecting straight 
lines as shown in figure 5. The lines make angles of 30", go", and 150" with the 
positive, real w axis. 

i C )  

Figure 4. Zeros for the basic cell system of six spins with the zeros plotted in the 
y = exp(2ph) plane for cases of: ( a )  x = 1.1; ( b )  x = 2.0; and (c) x = 00. The zeros for 
x = 1.0 are ail at y =-1.0. 

( Q )  ( b )  I C )  

Figure 5. Zeros for the basic cell system of six spins with the zeros plotted in the w plane 
for cases where: (a) x = 1.1; ( b )  x = 2.0; and ( c )  x = 00. The zeros for x = 1.0 are at infinity. 

If we consider the next step in this progression of basic cell systems we consider 
an eight-spin system as shown in figure l ( c )  whose Hamiltonian is 

H ( { S } )  = -JS1S1S1s1S2S2S2s2-h(s1+S1+S*+s1+S2+t*+5*+s2). (2.5) 
Here we see a continuation of the results from the two-, four- and six-spin systems. 
The zeros lie on four intersecting circles in the y plane or four straight lines through 
the origin in the w plane as shown in figure 6 .  

One sees from figures 3, 5 and 6 that in the w plane while the zeros lie on straight 
lines, they may also be characterised as being on circles whose centre is the origin of 
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Figure 6. Zeros of the basic cell system of eight spins with the zeros plotted for x = 2 in 
the y plane in ( a )  and in the w plane in ( b ) .  For x = 00 the zeros in the w plane are 
plotted in ( c )  and in the y plane in ( d ) .  

the w plane. As the interaction strength J is weakened, the radius of the circle on 
which the zeros are located increases. When J is infinite ( x  is infinite) the circle is of 
unit radius. When J becomes zero (x  is equal to one) the circle has expanded to 
infinite radius. For the two extremes J being equal to zero and J being equal to 
infinity, all three systems have radii for the circle on which the zeros lie as infinity 
and unity, respectively. But at an intermediate value of J, e.g. the J corresponding 
to x = 1.1, the eight-spin system has a circle associated with its zeros which is the 
smallest of the three systems and the four-spin system has the largest radii associated 
with its zeros. 

3. Quasi-one-dimensional systems 

We now wish to investigate the location of the zeros of the partition for quasi-one- 
dimensional systems, using as the basic cells or building blocks the systems we have 
considered in the previous section. The first system we consider consists of 2N sites 
arranged to form the ladder-type lattice shown in figure 7(a). The Hamiltonian for 
the system is 

where we impose periodic boundary conditions by having S N , ~  = SI. We can calculate 
the partition function of this model using the usual transfer matrix method (Huang 
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Figure 7. Quasi-one-dimensional systems of four-body interactions in ( a )  and with 
six-body interactions in ( b ) .  

1967, Thompson 1972). The transfer matrix is a four-by-four matrix with four 
eigenvalues. The eigenvalues of the matrix are easy to calculate due to the fact that 
two of them are zero. The two non-zero eigenvalues are 

A* = 2x cosh2(ph)*2[x2sinh4(ph) + ( l / ~ ~ ) c o s h ( 2 p h ) ] ~ ' ~  (3.2) 

2 = (A+)N + (3.3) 

where again x = exp(pJ). The partition function is then simply 

Since we are after the zeros of the partition function, we rewrite it as 
w 
1 .  

Z =  Il (A+-exp(-e,)A-)=o 
y = l  

(3.4) 

where 19, = (27 - l)n/N. 
With the explicit values of A +  and A- inserted in (3.4), one can find the zeros of 

the partition function. If the results of the previous section for the four-spin system 
carry over to the quasi-one-dimensional system, the zeros of the partition function 
plotted in the w[tanh (p  h)] plane will lie along two straight lines: one at 45" and the 
other at 135" to the real axis. Even simpler is the fact that for the partition function 
equal to zero [tanh (ph)I4 takes on negative real values. One finds by explicit 
calculation using (3.2) and (3.4) that 

-tan2(ey/2) - i / x 4  
1 - 1/x4 

[tanh(ph)I4 = (3.5) 

Equation (3.5) holds for arbitrary N and for x b 1, i.e., J b 0, and is a direct proof 
that the zeros for the full one-dimensional system have the same simple characterisation 
as the zeros of the four-spin system of section two. A plot of the zeros in the w plane 
for a system where N = 10 is given in figure 8. Two cases are illustrated: one where 
x is infinite and one where x = 1.1, and one sees that the zeros move in toward the 
origin and along the straight-line segments as x is increased. At x = 1.0, i.e. J = 0, 
all zeros are at infinity. 
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Figure 8. Zeros of the quasi-one-dimensional system with four-body interactions in the 
w plane with N = 10; in case ( a )  x = 1.1 and in case ( b ) ,  x =a. 

A similar calculation has been done for a lattice consisting of individual six-spin 
units combined to form the quasi-one-dimensional lattice shown in figure 7(6). The 
Hamiltonian for the system is 

N N 

i = l  i = l  
H({S} )  = -J SiSiSiSi+1Si+1Si+l- h C (Si +Si +fi). (3.6) 

Again the transfer matrix method has been used to calculate the partition function. 
The transfer matrix is eight-by-eight and, therefore, has eight eigenvalues. Again all 
but two of the eigenvalues are zero. The two non-zero eigenvalues are 

A* = 8~ C O S ~ ~ @ ~ ) * { ~ ~ X ~ C O S ~ ~ @ ~ ) - ~ ( X ~ -  1/x2)[6 cosh(4ph)+ 10]}1’2. (3.7) 
The zeros in terms of tanh(ph) can be calculated in the same manner as with the 
previous system. However, due to the distribution of the zeros of the simple six-spin 
system investigated in the previous section, we can conjecture that it is simpler to 
look at [tanh(ph)I6 which should be negative when the partition is zero. The equation 
giving the zeros in terms of [tanh(ph)16 is 

-tan2(e,/2) - 
[tanh@h)l6 = 

1 -(1/x4) (3.8) 

The right-hand side of (3.8) is identical to the right-hand side of (3.5). The zeros for 
any N then lie along the three line segments of figure 5 .  The zeros for N = 10 and x 
equal to infinity and 1.1 are plotted in figure 9. 

The system consisting of eight-spin interactions which would be the next step in 
the series of quasi-one-dimensional systems would result in a sixteen-by-sixteen matrix. 
We have not constructed such a matrix, rather the simple connection between equation 
(3.5) pertaining to the four-spin interactions and (3.8) pertaining to the six-spin 
interactions leads to the obvious conjecture that for a system which is a natural 
extension of the type systems we have considered in this section, but having in general 
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Figure 9. Zeros of the quasi-one-dimensional system with six-body interactions in the 
w plane with N = 10; in case ( a )  x = 1.1 and in case ( b )  x =Co. 

2N-spin interactions one has 

-tan2(0,/2) - ( i /x4)  
[tanh(ph)]'" = 

1 - (1/x4) (3.9) 

For the case n = 4 and N = 2 the values of tanh(ph) given by (3.9) check with those 
calculated for the eight-spin system of 4 2 after taking into consideration the periodic 
boundary conditions imposed in this section. For example, one must be careful not 
to take x = 1.1 in (3.9) if one wants to compare the results to the x = 1.1 case for the 
eight-spin system of 0 2. Because of the periodic boundary conditions one should take 
x = ( 1 . 1 ) ~ ' ~  in equation (3.9). 

4. Higher-dimensional systems 

We conclude by finding the zeros of the partition function for a two-dimensional and 
three-dimensional system. We look at only the simplest examples of each such system 
having four-body interactions. 

The two-dimensional system consists of nine spins each located on a vertex of a 
three-by-three square lattice. Therefore, the system is merely a two-by-two array of 
the basic building block of figure l (a ) ,  each building b!ock has a four-body interaction 
associated with it as in the previous sections. The partition function can be calculated 
directly and is 

x "( y + 1) + (4x ' + 4 + x-") (  y + y ) + ( 8 x  + 14 + 12x-' + 2xT4)(y7 + y ') 

+ ( 6 ~ " + 1 6 ~ ~ + 3 0 + 2 8 ~ - ~ + 4 x - ~ ) ( y ~ + y ~ )  

+ ( 9 ~ ~ + 3 6 ~ ~ + 4 8 + 2 4 ~ - ~ + 9 x - ~ ) ( y ~ + y ~ )  (4.1) 
where as before y = exp(2ph) and x = exp(pJ). The zeros of the partition function 
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are plotted in figure 10 for various values of x .  In this figure the two intersecting 
circles along which the zeros of the four-body interaction systems of §§2 and 3 
are shown. The zeros for this case do not lie along these two intersecting circles. This 
example thus illustrates that, unlike the pair interaction systems of Lee and Yang 
where one can have any set of pair-interactions, one cannot have any set of four-body 
interactions and still have the zeros lying on the two intersecting circles of the previous 
sections. 

II I I  

Figure 10. Zeros of the two-dimensional 3 X 3 square lattice with four-body interactions 
plotted in the y plane for cases of: (a)  x = 1.1; ( b )  x = 2.0; and ( c )  x = W .  

For the three-dimensional system we consider a system of eight spins located on 
the corners of a cube, The four spins on the corners of each face interact with one 
another. Hence we have six, four-body interactions. The partition function for this 
system is 

x6(ys+1)+8(y7+y)+(12x2+ 1 2 ~ - ~ + 4 x - ~ ) ( y ~ + y ’ )  

+ 56(y5 + y3)  + ( 1 4 ~ ~ + 2 4 ~ ~ + 2 4 ~ - ~ + 8 x - ~ ) y ~  (4.2) 
where again x = exp(pJ) and y = exp(2ph). The zeros of (4.2) are plotted in figure 
11. In this case the zeros are again on the same two intersecting circles found for the 
four-body interactions of §§ 2 and 3. 

From the two systems studied in this section we have shown that one does not 
have the possibility of a general theorem restricting the zeros to the two intersecting 
circles of the previous sections for all four-body interaction systems. The two systems, 
however, do not rule out the possibility of still having some restricted theorem, 
especially since the cubic system does have its zeros on these intersecting circles. We 
plan to discuss this problem in a future publication looking at a set of systems which 
hopefully will indicate a general property which, if satisfied, would require the zeros 
to lie on the two intersecting circles. 



2508 J L Monroe 
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Figure 11. Zeros of the three-dimensional cube with four-body interactions plotted in 
the y plane for cases of: ( a )  x = 1.1; ( b )  x = 2.0; and ( c )  x = 03. 
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